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Abstract
The bulk and surface phonon–polaritons in ternary mixed crystals are
investigated in the random-element-isodisplacement model and Born–Huang
approximation. The numerical results of the polariton frequencies and oscillator
strengths as functions of the wavevector and the composition for ternary mixed
crystals Alx Ga1−xAs, Znx Cd1−x S, and Gax In1−x N are obtained and discussed.
It is shown that there are three propagated bands separated by two forbidden
bands for the phonon–polaritons in bulk materials and two branches of surface
phonon–polaritons in semi-infinite systems. The ‘two-mode’ and ‘one-mode’
behaviours of phonon–polaritons are also shown in the dispersion curves of bulk
and surface phonon–polaritons.

1. Introduction

Polaritons, as a kind of hybrid modes of elementary excitations in condensed matters, have been
attracting a great deal of interest since the pioneering work of Huang et al [1–4]. Properties
of phonon–polaritons associated with lattice vibrations coupled to electromagnetic waves have
been successfully studied experimentally and theoretically [5–8]. The spontaneous Raman
scattering of phonon–polaritons was proposed theoretically and first analysed experimentally
through the observation of the lower dispersion curve in the GaP cubic crystal by Henry and
Hopfield [2]. Later, the surface phonon–polaritons in the GaAs film, as well as GaP thin
slab and other materials were also observed [9–11]. Moreover, the generation, dispersion
and decay of phonon–polaritons have been extensively investigated experimentally by various
optical methods [12–16]. Very recently, the promising technique of terahertz (THz) time-
domain spectroscopy has been used to observe phonon–polariton dispersion relations [17].
Surface phonon–polaritons have also been observed by the method of attenuated total reflection
(ATR) [18, 19].
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In recent years, the properties of ternary mixed crystals (TMCs) have attracted much
attention of both theoretical and experimental scientists [20–24] because of their applications
to multilayer materials of semiconductors. As was well known, the optical phonon modes
in TMCs show properties quite different from those in binary crystals: there are two pairs
of branches of longitudinal–transverse optical (LO–TO) phonon modes propagated in polar
TMC materials [20, 25]. According to the oscillator strengths and the features of the modes,
polar TMCs can be classed into ‘one-mode’ and ‘two-mode’ behaviour types. In a ‘one-mode’
behaviour TMC, a pair of LO–TO branches is much stronger than another in the oscillator
strengths and should be the only one considered in practice. Otherwise, the two pairs of
LO–TO phonon branches are both important and observable in ‘two-mode’ behaviour TMC
systems. Naturally, the novel properties of optical vibrations in TMCs, such as the ‘two-mode’
behaviour and the concentration dependence of frequencies and oscillator strengths, contribute
new characteristics of phonon–polaritons.

The phonon–polariton results in the infrared absorption and dielectric abnormality, etc,
and concerns the developments and applications of new photoelectron devices [14–19, 26–28].
Employing polar TMCs in artificial materials can enable one to modify the vibrational and
optical properties as well as the polariton characteristics of the systems in a controlled manner,
and may extend their applications to devices [20–24]. However, although the polaritons of
polar binary crystals are widely investigated, to the best of our knowledge, the theoretical and
experimental studies of the polaritons in polar TMCs, in special surface polaritons, have been
rarely reported. Further investigations on the properties of polaritons in TMC systems are
therefore invoked.

One of the authors and his collaborators have theoretically investigated the optical
vibrations of polar TMCs in the modified random-element-isodisplacement (MREI)
approximation [25] and obtained the normal modes of optical phonons and the electron–phonon
interaction Hamiltonian [29]. In the present paper we extend the previous work and discuss
the bulk and surface phonon–polaritons in TMCs. The MREI approximation [25] and the
Born–Huang method [1] for the optical vibrations of lattices are used in the formulation. The
frequencies and the oscillator strengths of the polaritons are calculated numerically for several
typical TMCs. The dispersion characteristics and their concentration dependences of the bulk
and surface phonon–polaritons are discussed in detail.

2. Bulk phonon–polaritons in ternary mixed crystals

Now we first explore the properties of bulk phonon–polaritons in polar TMCs. Consider
an electromagnetic wave propagated in a polar TMC Ax B1−xC of cubic symmetry, which
couples with transverse optical (TO) modes of lattice vibrations and forms phonon–polaritons.
Since the frequency of the electromagnetic wave coupling with optical phonons must be the
order of magnitude of the TO phonon frequency ωTO, which is related to the photons with
long wavelengths compared to the lattice constant, the long-wavelength approximation will
be adopted in our calculations [4]. Moreover, the dielectric function ε(k, ω) is considered as
isotropic for the TMC material of cubic symmetry. The propagation of phonon–polaritons
coupled with the electromagnetic radiation with the TO phonon field in the TMC can be
described by linking the Maxwell’s equations with the Born–Huang-like equations describing
the lattice vibrations as follows:

∇ × �E = −µ0
∂ �H
∂ t

, (1)

∇ × �H = ∂

∂ t

(
ε0 �E + �P

)
, (2)
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∇· �D = 0, (3)

∇· �H = 0, (4)

�̈W 1 = b11 �W1 + b12 �W2 + b13 �E, (5)

�̈W 2 = b21 �W1 + b22 �W2 + b23 �E, (6)
�P = b31 �W1 + b32 �W2 + b33 �E . (7)

Here, �W1 = µ
1/2
1 �s1 and �W2 = µ

1/2
2 �s2, where �s1 = (�uA−�uC) and �s2 = (�uB−�uC) are the relative

displacements of the A–C ion and B–C ion pairs, respectively, µ1 and µ2 are the corresponding
reduced masses. uA, uB, and uC are respectively the displacements of the ions A, B, and C.
�E, �H are respectively the macroscopic electric and magnetic field and �P the polarization. µ0

and ε0 are the vacuum magnetic permeability and the dielectric constant respectively. The
dynamical coefficients bi j (i, j = 1, 2, 3) in equations (5)–(7) have been determined by using
the macroscopic parameters of the end-member binary crystals AC (x = 1) and BC (x = 0),
according to the Born–Huang procedure in the previous works [29, 30], and here we give them
in the appendix.

Let us assume the solutions of equations (1)–(7) as the following form

�W , �p, �E, �H ∝ exp[i(�k · �r − ωt)], (8)

where ω and �k are respectively the frequency and wavevector of the phonon–polaritons.
Inserting the solutions of form (8) into equations (1)–(7), one can obtain the following relation
between the macroscopic electric field �E and the polarization �P:

�P =
{

b31

[
b23b12 − b13

(
b22 + ω2

)
(
b11 + ω2

) (
b22 + ω2

) − b12b21

]

+ b32

[
b13b21 − b23

(
b11 + ω2

)
(
b11 + ω2

) (
b22 + ω2

) − b12b21

]
+ b33

}
�E . (9)

The dielectric function of the TMC then can be written as

ε(ω) = 1 + χ (ω)/ε0, (10)

where

χ (ω) =
{

b31

[
b23b12 − b13

(
b22 + ω2

)
(
b11 + ω2

) (
b22 + ω2

) − b12b21

]

+ b32

[
b13b21 − b23

(
b11 + ω2

)
(
b11 + ω2

) (
b22 + ω2

) − b12b21

]
+ b33

}
. (11)

And the implied dispersion relation of bulk phonon–polaritons is then given by

k2c2

ω2
= 1 + χ (ω)/ε0. (12)

Solving equation (12) with (11), one can obtain generally three frequencies of phonon–
polaritons propagated in such a TMC system as functions of the wavevector k. Naturally the
frequencies also depend on the composition x .

We have calculated numerically the frequencies of bulk phonon–polaritons for several
TMCs of III–V, II–VI compound semiconductors with various compositions x . As examples,
the phonon–polariton dispersion curves for the TMC systems AlxGa1−xAs, Znx Cd1−x S, and
Gax In1−x N are illustrated in figure 1, where the composition x is chosen successively as 0,
0.38, 1; 0, 0.5, 1; and 0, 0.5, 1 for the three systems. The used parameters are listed in table 1.
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Figure 1. Energies of the bulk phonon–polaritons as functions of the wavevectors for
(a) Alx Ga1−x As, (b) Znx Cd1−x S, and (c) Gax In1−x N. The dimensionless wavevector kc/ωTGaAs,
kc/ωTCdS, and kc/ωTInN are used, where ωTGaAs, ωTCdS, and ωTInN are the frequencies of TO
phonons for systems (a), (b), and (c), and c the velocity of light.

As was expected, the dispersion curves of TMCs degenerate respectively to those of the
corresponding binary crystals GaAs, CdS, and InN when x = 0 and AlAs, ZnS, and GaN
when x = 1, where there are only two branches of polariton dispersion curves. When the
composition x is neither zero nor one, dispersion characteristics different qualitatively from
those in binary crystals can be found. It is clearly seen that there are three branches of phonon–
polariton frequencies in the figures.

As k → 0, one of the three solutions (photo-like branch) has vanishing frequency similar
to that in binary systems, but the others get finite frequencies. The two finite frequencies
correspond to respectively the lower (ω1L) and upper (ω2L) branches of long-wavelength LO
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Table 1. Optical phonon energies, dielectric constants, effective masses of electrons, and the lattice
constants for binary materials. Energy is measured in meV, m in the electron rest mass, and the
lattice constants in nm.

Materials h̄ωTO h̄ωLO ε0 ε∞ m M (au) a

AlAsa 44.88 50.09 10.06 8.16 0.150 26.99 74.92 0.5660c

GaAsa 33.29 36.25 13.18 10.89 0.067 69.72 74.92 0.56419c

ZnSb 34.65 44.00 8.00 5.14 0.280 65.38 32.06 0.5410c

CdSb 30.25 38.24 8.42 5.27 0.155 112.4 32.06 0.5825c

GaNd 69.43 91.87 9.5 5.35 0.20 69.72 14.01 0.5185c

InNd 59.27 86.05 9.3 7.72 0.11 114.8 14.01 0.5760c

a Reference [31].
b Reference [32].
c Reference [33].
d Reference [22].

Table 2. Calculated bulk and surface optical phonon energies for several ternary mixed crystals.
Energy is measured in meV.

Material hω1S hω2S hω1L hω1T hω2L hω2T

Al0.38Ga0.62As 31.22 45.54 31.28 30.37 45.84 42.72
Zn0.5Cd0.5S 20.37 40.19 20.39 20.18 41.38 33.36
Ga0.5In0.5N 27.85 79.48 27.87 27.84 81.22 67.30

phonons of the TMCs, for which ε(ω) = 0. As k → ∞, the frequencies of two lower branches
of polaritons finally tend to respectively the frequencies of the lower (ω1T) and upper (ω2T)
branches of long-wavelength TO phonons of the TMCs, and the highest one (photo-like branch)
to infinity. The mode frequencies of TO and LO phonon branches in the TMCs were calculated
with various methods [25, 29, 30] and here we list our results for the above-mentioned systems
in table 2.

Moreover, the phonon–polariton dispersion curves in figure 1 show so-called ‘two-mode’
and ‘one-mode’ behaviours respectively for different systems. The TMC Al0.38Ga0.62As shows
its ‘two-mode’ behaviour in the dispersion curves. For this kind of system, we have two TO–
LO pairs of frequency branches of optical phonons, i.e. ω1T–ω1L and ω2T–ω2L pairs, and in
succession ω2L > ω2T > ω1L > ω1T, so that the propagated polariton modes are divided into
three frequency regions (propagated bands) by two forbidden bands from ω1T to ω1L and ω2T

to ω2L respectively, where no phonon–polariton modes exist.
Otherwise, the ‘one-mode’ behaviour of optical vibrations is shown by the phonon–

polariton dispersion curves of the TMC systems Zn0.5Cd0.5S and Ga0.5In0.5N. For this kind
of system we have only one TO(ω2T)–LO(ω2L) pair of optical-phonon branches, whose
frequencies are obviously separate. The frequencies in the other TO(ω1T)–LO(ω1L) pair are
close to each other, so that the corresponding forbidden band is nearly a horizontal line, whose
frequency falls in the lower propagated band. Therefore only one forbidden band for the
phonon–polariton propagation can be observed in these systems.

For ease of representation, we have also numerically calculated the oscillator strengths
of the polaritons as functions of the composition x in the TMCs AlxGa1−xAs, Znx Cd1−x S,
and Gax In1−xN, and the numerical results are plotted in figure 2. It is seen that the oscillator
strengths of two branches of polaritons, the AlAs-like (the upper) and GaAs-like (the lower)
modes, have the same order of magnitude and increase non-linearly with increasing the mole
fraction of the Al and Ga components respectively in the Alx Ga1−x As system. Therefore, the
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Figure 2. Oscillator strengths of the bulk phonon–polaritons as functions of the composition x for
(a) Alx Ga1−x As, (b) Znx Cd1−x S, and (c) Gax In1−x N.

two branches of oscillators are both observable and the system shows the ‘two-mode’ behaviour
of optical vibrations.

On the other hand, for the TMC systems Znx Cd1−xS and Gax In1−x N in figures 2(b) and (c),
the oscillator strength of the upper branch of polaritons is obviously greater than the lower one.
The latter has oscillator strength too weak to be observed. Therefore only the upper branch of
oscillators is observable, so the systems are of ‘one-mode’ behaviour.

3. Surface phonon–polaritons in ternary mixed crystals

In the above discussion, we have mentioned a bulk system, where polaritons propagate in an
infinite TMC material and all the effects associated with the surfaces are ignored. Now we turn
to discuss the surface modes of phonon–polaritons. Consider a semi-infinite TMC occupying
the half-space of z < 0 and a phonon–polariton propagates along the surface between the
vacuum and the TMC with the two-dimensional wavevector �k‖. For convenience we choose
the wavevector �k‖ along the x direction, i.e. kx = k‖ and ky = 0, without loss of generality. In
the present geometry, only the surface polaritons of transverse magnetic (TM) character need
to be considered. The electric field �E lies in the x–z plane and the magnetic field �H is along
the y-axis. Mills and Maradudin have investigated the polaritons in a film of binary crystal
material and obtain surface modes of phonon–polaritons [3]. Here we extend their theory to the
case of semi-infinite TMC systems. For ease of statement, we rewrite here main results given
by Mills and Maradudin. To describe the solutions localized in the vicinity of the surface of the
material, the field �E is chosen as the following form:

E =
{

E (1) exp
(
ik‖x − κ1z

)
e−iωt z > 0

E (2) exp
(
ik‖x + κ2z

)
e−iωt z < 0

(13)

which decays exponentially to zero as z → ±∞, where κ1 and κ2 are respectively the decay
constants of the surface waves in the vacuum and TMC material and both real and positive to
keep the waves decaying with departing from the surface. They are determined by the following
equation:

κ2
i = k2

‖ − εi (ω) ω2/c2 (i = 1, 2). (14)
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Using the continuity boundary condition, the relation between the dielectric functions of media
‘1’ and ‘2’ is obtained as

ε2(ω)/κ2 = −ε1/κ1. (15)

Denoting that medium ‘1’ is a vacuum and ε1 = 1, we finally have the equation

ε(ω)/κ2 = −1/κ1. (16)

Substituting equation (14) into (16) one can obtain the implied dispersion equation for the
surface phonon–polaritons

k2
‖c2/ω2 = ε (ω)/[1 + ε (ω)], (17)

where ε(ω) is the dielectric function of the TMC depending on the polariton frequency ω. It
is evident from equation (16) that the surface polariton waves can exist only in the region of
frequencies where ε(ω) < 0.

By using the corresponding expressions of equations (10) and (11) in section 2 for the
dielectric function ε(ω) in the TMC, equation (16) can be solved numerically and gives the
frequencies of the surface phonon–polaritons as functions of the wavevector k‖ as well as
the composition x . The computed results for the systems Alx Ga1−x As, Znx Cd1−xS, and
Gax In1−x N are illustrated in figure 3.

The dispersion curves of surface phonon–polaritons in figure 3 show characteristics quite
different from those in bulk materials and binary systems. When x = 0 and 1, the dispersion
curves degenerate to those of the binary end-materials: there is only one branch of surface
phonon–polariton frequency lying between ωTO and ωLO in the forbidden band for the bulk
phonon–polariton. When the composition x is neither unity nor zero, the dispersion curves
display their TMC characteristics: two branches of surface phonon–polariton frequencies as
well as the ‘two-mode’ and ‘one-mode’ behaviours.

It is found in figure 3(a) that there are two branches of surface phonon–polariton
frequencies lying respectively in the two forbidden bands of bulk phonon–polaritons for the
‘two-mode’ behaviour TMC Al0.38Ga0.62As. The curves start from the frequencies of the upper
and lower branches of TO phonons in the bulk TMC at the wavevectors k‖ → ω2T/c and
ω1T/c, and finally tend to two SO-phonon frequencies ω2S (AlAs-like) and ω1S (GaAs-like) as
k‖ → ∞, respectively. One can find two forbidden bands: from ω2S to ω2L and ω1S to ω1L,
where neither the bulk phonon–polariton modes nor the surface modes can be propagated. The
width of the forbidden band of GaAs-like modes (the lower one) is around 0.9 meV, which is
one-third of that of AlAs-like modes (about 3.2 meV). This results in that the Raman scattering
peak by the surface phonon–polariton mode of the lower branch may be hidden in the tail of
the bulk modes. Therefore we guess that the upper branch of the surface phonon–polaritons
for the semi-infinite Al0.38Ga0.62As is expected to be easily observed, but the lower one slightly
difficult.

Figures 3(b) and (c) show the one-mode behaviour characteristics of the surface phonon–
polaritons in the TMCs Zn0.5Cd0.5S and Ga0.5In0.5N. There is only one observable branch of
surface phonon–polaritons between ω2T and ω2L, corresponding to the forbidden band of the
upper branch of bulk modes. The widths of the upper forbidden bands are 8 and 12 meV for
Zn0.5Cd0.5S and Ga0.5In0.5N respectively, so that the corresponding surface modes could be
observed. However, the curve of the lower branch of surface polaritons is nearly a horizontal
line, whose frequency falls in the lower bulk-polariton propagated bands, so that cannot be
observed independently.

To understand clearly the ‘two-mode’ and ‘one-mode’ mode behaviours of surface modes
in TMCs, we have also calculated the frequencies of SO phonons for several TMC systems. Let
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Figure 3. Energies of the surface phonon–polaritons (solid lines), bulk phonon–polaritons (long-
dashed), and the ‘photons’ (dashed–dotted) as functions of the wavevector k‖ for (a) Alx Ga1−x As,
(b) Znx Cd1−x S, and (c) Gax In1−x N. Dimensionless wavevectors the same as those in figure 1 are
used.

κ1 = κ2 = k‖ in equation (16); one can obtain the following equation satisfied by SO phonon
modes in a ‘semi-infinite’ TMC:

ε(ω) = −1. (18)

Solving numerically equation (18) with (10) and (11), we obtain the SO phonon frequencies as
functions of the composition x for Alx Ga1−x As, ZnxCd1−xS, and Gax In1−xN systems and the
results are illustrated in figure 4.

For the ‘two-mode’ behaviour TMC Alx Ga1−x As in figure 4(a), two branches of
observable SO-phonon frequencies, ω1S and ω2S, lie between the LO and TO modes
respectively subject to the GaAs-like (the lower) and AlAs-like (the upper) LO–TO pairs. On
the other hand, the surface modes also show their ‘one-mode’ behaviour in Znx Cd1−x S and
Gax In1−x N systems (see figures 4(b) and (c)). The branch of SO-phonon modes with the higher
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Figure 4. Calculated frequencies of surface optical phonons (solid lines) for (a) Alx Ga1−x As,
(b) Znx Cd1−x S, and (c) Gax In1−x N. The dashed lines are the frequencies of bulk optical phonons.

frequencies ω2S is dominant in this kind of system. Its frequency changes continuously from
ωSB of CdS (or InN) at x = 0 to ωSA of crystal ZnS (or GaN) at the other end. Another branch
with the lower frequencies ω1S is not important because of the very weak oscillator strength.

4. Conclusion

We have investigated theoretically the bulk and surface phonon–polaritons of TMCs in the
MREI model and the Born–Huang approximation. The frequencies and oscillator strengths of
the bulk and surface phonon–polaritons have been calculated. It is found from the numerical
results for TMCs AlxGa1−xAs, Znx Cd1−x S, and Gax In1−xN that there are three frequency
branches and two forbidden bands for the bulk phonon–polaritons in TMC systems. Two
branches of surface phonon–polaritons are also found in semi-infinite TMC systems. The
‘two-mode’ and ‘one-mode’ behaviours of phonon–polaritons are also shown in the dispersion
curves of bulk and surface phonon–polaritons.

It should be pointed out that we have considered the III-nitride (III-N) system Gax In1−x N
in NaCl structure to discuss their bulk and surface phonon–polaritons. In fact, the III-N
compounds are usually grown in a wurtzite structure, which is not of a cubic lattice. The
more accurate calculation for III-N TMCs should take the anisotropy into account and will be
a subject of future investigations.
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Appendix

The expressions for the dynamical coefficients bi j (i, j = 1, 2, 3) in equations (5)–(7) can be
determined by the following formulae [29, 30]:
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b11 = −ω2
TAηA

MC + MAx

MC + MA
+ ωTA

[
ωTAκAσA

MC + MAx

MC + MA

+ ωTB (κAκBσAσBµB/µA)1/2 MA(1 − x)

MC + MA

]
xa(x), (A.1)

b12 = −ω2
TBηB

MB(1 − x)

MC + MB
(µA/µB)1/2 + ωTB

[
ωTBκBσB (µB/µA)1/2 MA(1 − x)

MC + MA

+ ωTA (κAκBσAσB)1/2 MC + MAx

MC + MA

]
(1 − x)a(x), (A.2)

b13 =
[
ωTA (κAσA)1/2 MC + MAx

MC + MA
+ ωTB (κBσBµB/µA)1/2 MA(1 − x)

MC + MA

]
ε

1/2
0 a(x), (A.3)

b21 = −ω2
TAηA

MAx

MC + MA
(µB/µA)1/2 + ωTA

[
ωTAκAσA (µA/µB)1/2 MBx

MC + MB

+ ωTB (κAκBσAσB)1/2 MC + MB(1 − x)

MC + MB

]
xa(x), (A.4)

b22 = −ω2
TBηB

MC + MB(1 − x)

MC + MB
+ ωTB

[
ωTBκBσB

MC + MB(1 − x)

MC + MB

+ ωTA (κAκBσAσBµA/µB)1/2 MBx

MC + MB

]
(1 − x)a(x), (A.5)

b23 =
[
ωTB (κBσB)1/2 MC + MB(1 − x)

MC + MB
+ ωTA (κAσAµA/µB)1/2 MBx

MC + MB

]
ε

1/2
0 a(x),

(A.6)

b31 = ωTA (κAσA)1/2 ε
1/2
0 xa(x), (A.7)

b32 = ωTB (κBσB)1/2 ε
1/2
0 (1 − x)a(x), (A.8)

b33 = ε0[a(x) − 3], (A.9)

where

a(x) = 3/[1 − γAσAx − γBσB(1 − x)]
σl ≡ vl/v, γl = ε∞l − 1

ε∞l + 2
, κl = εsl − ε∞l

(ε∞l + 2)2
,

ηl = εsl + 2

ε∞l + 2
, (l = A, B).

In the above equations, εsl and ε∞l are respectively the static and optical dielectric constants of
the end-member materials (AC for l = A and BC for l = B). ωTA and ωTB are respectively the
TO-phonon frequencies of AC and BC. MA, MB, and MC are respectively the masses of ions
A, B, and C. The reduced masses are given by

µA = MC MA

MC + MA
, and µB = MC MB

MC + MB
.

Here MA, MB, and MC are respectively the masses of ions A, B, and C, v is the volume of the
unit-cell of the TMC, and vA and vB are respectively the unit-cell volume of the end-member
crystals AC and BC.
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